16b^2+11=2884

Simple and best practice solution for 16b^2+11=2884 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16b^2+11=2884 equation:



16b^2+11=2884
We move all terms to the left:
16b^2+11-(2884)=0
We add all the numbers together, and all the variables
16b^2-2873=0
a = 16; b = 0; c = -2873;
Δ = b2-4ac
Δ = 02-4·16·(-2873)
Δ = 183872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{183872}=\sqrt{10816*17}=\sqrt{10816}*\sqrt{17}=104\sqrt{17}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-104\sqrt{17}}{2*16}=\frac{0-104\sqrt{17}}{32} =-\frac{104\sqrt{17}}{32} =-\frac{13\sqrt{17}}{4} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+104\sqrt{17}}{2*16}=\frac{0+104\sqrt{17}}{32} =\frac{104\sqrt{17}}{32} =\frac{13\sqrt{17}}{4} $

See similar equations:

| x(x+9)=70 | | 15x-14=3x | | 8x-5x+160=8x+70 | | ¾(2x+4)=x+19 | | 8x-5x+160=8x=70 | | 15(×-1)+2(x+1)=75 | | -2z-3z=0 | | Y=1396.6x+2.1235 | | (1.5)(x-2)(x-(0.5x-1))=0 | | x(x-2)/(x+3)(x-4)2=0 | | (2y-7)/3+(8y-9)14=(3y-5)21 | | -3-(6-2p)=0 | | (2y-7)/3+(8y9)/14=(3y-5)/21 | | -3.2+w/6=-22.4 | | 7x^2-9x=-20 | | 3x+12+2x+10=6 | | a-1=2a+2 | | 5(x-1)-2(x-1)=22 | | 5(x-1)-2(x-1=22 | | 7x^2+21-28=0 | | 10+3s–6s=-10–s | | 2(x-4)-(6+4)=3x-4 | | 9g=-10+8g | | 2(2w+1)=4(w+2)-5 | | 2x÷5=16 | | -4h=-7h-6 | | (2+6i)-(-12-i)=0 | | 3t-10=10+t | | 7(y+2)-1=6y+10 | | 13(2c-9)=7c-4 | | -4v=-8-8v | | 10x-4(x-6)+2=0 |

Equations solver categories